کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
190527 | 459700 | 2010 | 9 صفحه PDF | دانلود رایگان |

A novel symmetric conjugated oligo(phenylene-ethynylene) (OPE) linear molecule (1,4-bis(4-aminophenylethynyl)benzene); BAB) was synthesized by Sonogashira cross-coupling reactions. The structure and purity of the compound were confirmed by 1H NMR, 13C NMR and infrared (IR) and mass spectrometry (MS). The electrochemical oxidation process and mechanism of BAB were investigated via in situ Fourier transform infrared (FTIR) spectroelectrochemistry and electrochemical quartz crystal microbalance (EQCM). The electrochemical oxidation mechanism of BAB was proposed. The studies revealed that the BAB concentration and oxidation potential had a significant influence on the growth of the polymer film. A densely packed polymer film, which exhibited nonelectroactivity, was formed when a high monomer concentration and a high oxidation potential were used. When the electropolymerization of BAB was conducted at a lower concentration, a new pair of redox peaks appeared, and the resultant thin film had better electroactivity. The in situ FTIR studies confirmed that BAB could be electro-oxidized into radical cations and then electropolymerized via para (N-N) and/or ortho (N-C) coupling reactions to form polymers with a larger conjugated π-electron system. The surface morphology of the poly-BAB was also investigated with atomic force microscopy (AFM) and scanning electron microscopy (SEM).
Journal: Electrochimica Acta - Volume 56, Issue 1, 15 December 2010, Pages 454–462