کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
191284 | 459717 | 2009 | 5 صفحه PDF | دانلود رایگان |

An effective method of carbothermal reduction was employed to prepare spherical microcrystal NiSnx alloy powders from oxides of Sn and Ni used as anode materials for Li-ion battery. According to XRD, SEM and TEM analysis, the synthesized spherical NiSnx powders show a loose submicro/micro-sized structure and a multi-phase composition. The prepared NiSnx alloy composite electrode exhibits a stable discharge capacity of electrode is ca. 380 mAh g−1 at constant current density of 50 mA g−1, and can be retained at 350 mAh g−1 after 25 cycles. Moreover, NiSnx alloys exhibit excellent high rate performance, i.e. stable discharge capacities of 300–310 mAh g−1 and the coulombic efficiencies of 97.5–99.5% have been obtained at the current density of 500 mA g−1. The loose submicro-sized particle structural characteristic and the Ni addition in Sn matrix should be responsible for the improvement of cycling stability of NiSnx electrode. The carbothermal reduction method is simple, low-cost and mass-productive, which should be viable to other alloy composite materials system of rechargeable lithium ion batteries.
Journal: Electrochimica Acta - Volume 54, Issue 16, 30 June 2009, Pages 4040–4044