کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1923049 1535848 2014 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Brain mitochondria from DJ-1 knockout mice show increased respiration-dependent hydrogen peroxide consumption
موضوعات مرتبط
علوم زیستی و بیوفناوری بیوشیمی، ژنتیک و زیست شناسی مولکولی سالمندی
پیش نمایش صفحه اول مقاله
Brain mitochondria from DJ-1 knockout mice show increased respiration-dependent hydrogen peroxide consumption
چکیده انگلیسی


• Brain mitochondria from DJ-1−/− mice show increased mitochondrial H2O2 consumption rates.
• DJ-1−/− mice show increased brain mitochondrial thioredoxin (Trx) activity.
• DJ-1−/− mice show increased total brain glutathione levels.
• Increased Trx activity may be the link to the increased H2O2 consumption rates.

Mutations in the DJ-1 gene have been shown to cause a rare autosomal-recessive genetic form of Parkinson’s disease (PD). The function of DJ-1 and its role in PD development has been linked to multiple pathways, however its exact role in the development of PD has remained elusive. It is thought that DJ-1 may play a role in regulating reactive oxygen species (ROS) formation and overall oxidative stress in cells through directly scavenging ROS itself, or through the regulation of ROS scavenging systems such as glutathione (GSH) or thioredoxin (Trx) or ROS producing complexes such as complex I of the electron transport chain. Previous work in this laboratory has demonstrated that isolated brain mitochondria consume H2O2 predominantly by the Trx/Thioredoxin Reductase (TrxR)/Peroxiredoxin (Prx) system in a respiration dependent manner (Drechsel et al., Journal of Biological Chemistry, 2010). Therefore we wanted to determine if mitochondrial H2O2 consumption was altered in brains from DJ-1 deficient mice (DJ-1−/−). Surprisingly, DJ-1−/− mice showed an increase in mitochondrial respiration-dependent H2O2 consumption compared to controls. To determine the basis of the increased H2O2 consumption in DJ1−/− mice, the activities of Trx, Thioredoxin Reductase (TrxR), GSH, glutathione disulfide (GSSG) and glutathione reductase (GR) were measured. Compared to control mice, brains from DJ-1−/− mice showed an increase in (1) mitochondrial Trx activity, (2) GSH and GSSG levels and (3) mitochondrial glutaredoxin (GRX) activity. Brains from DJ-1−/− mice showed a decrease in mitochondrial GR activity compared to controls. The increase in the enzymatic activities of mitochondrial Trx and total GSH levels may account for the increased H2O2 consumption observed in the brain mitochondria in DJ-1−/− mice perhaps as an adaptive response to chronic DJ-1 deficiency.

Graphical AbstractFigure optionsDownload as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Redox Biology - Volume 2, 2014, Pages 667–672
نویسندگان
, ,