کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
192383 | 459740 | 2010 | 4 صفحه PDF | دانلود رایگان |

Multilayer-type polymer electrolyte membranes composed of a sulfonated poly(4-phenoxybenzoyl-1,4-phenylene) (S-PPBP) layer and a mono[poly(propylene oxide)methacrylate]phosphate ester (PPHP) layer were fabricated by solution-casting procedure (Method 1) and hot-pressing procedure (Method 2) in order to suppress methanol permeability of electrolyte membranes. No delamination was observed by SEM measurements of S-PPBP/PPHP interfaces, indicating that PPHP had good adhesive properties to S-PPBP surfaces. The methanol permeability of S-PPBP/PPHP membranes was lower than that of S-PPBP membranes and decreased with increasing the thickness of PPHP layers. The bilayer membrane with 12 μm PPHP and 40 μm S-PPBP layers showed a methanol permeability of 2.97 × 10−7 cm2 s−1 in 1 mol dm−3 methanol aqueous solution at 25 °C, which was 13% less than that of the S-PPBP membranes. The conductivity of this membrane reached its optimum with values as high as 1.57 × 10−1 S cm−1 at 80 °C and 90%RH.
Journal: Electrochimica Acta - Volume 55, Issue 4, 25 January 2010, Pages 1385–1388