کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
192479 | 459743 | 2008 | 8 صفحه PDF | دانلود رایگان |

The behaviours of irreversible adsorption (IRA) of Sn adatoms on Pt(1 0 0), Pt(1 1 1) and Pt(1 1 0) electrodes were characterized using cyclic voltammetry. It has revealed that Sn can adsorb irreversibly on Pt(1 0 0) and Pt(1 1 1), while not significantly on Pt(1 1 0) electrode. Quantitative analysis of the relationship between 1 − θH and θSn suggests that Sn adatoms may adsorb preferably on hollow sites of Pt(1 1 1) (threefold) and Pt(1 0 0) (fourfold) planes, which is in accordance respectively with the values 0.31 and 0.21 of coverage of IRA Sn adatoms in saturation adsorption determined on these electrodes. The IRA Sn adatoms on different basal planes of Pt single crystal yield different impact on the electrocatalytic oxidation of ethanol. It has revealed that the IRA Sn adatoms on Pt(1 0 0) electrode have declined the activity for ethanol oxidation, while IRA Sn adatoms on Pt(1 1 1) have enhanced remarkably the electrocatalytic activity with Sn coverage θSn between 0.09 and 0.18. The oxidation peak potential Ep and the current density jp of ethanol oxidation on Pt(1 1 1)/Sn were varied with θSn, and the highest jp (1258 μA cm−2) as well as the lowest Ep (0.20 V) were measured simultaneously at θSn around 0.14. In comparison with the data obtained on a bare Pt(1 1 1), the Ep was shifted negatively by 65 mV and the jp has been enhanced to about 1.7 times on the Pt(1 1 1)/Sn (θSn = 0.14), which is ascribed to hydroxyl species adsorption at relatively low potentials on Pt(1 1 1)/Sn surfaces. The current study is of importance in revealing the fundamental aspects of modification of the basal planes of Pt single crystal using Sn adatoms, and the impact of this modification on electrocatalytic activity towards ethanol oxidation.
Journal: Electrochimica Acta - Volume 53, Issue 21, 1 September 2008, Pages 6081–6088