کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1927869 | 1050268 | 2016 | 7 صفحه PDF | دانلود رایگان |

• MiR-21a-5p inhibited BPA-induced 3T3-L1 differentiation by targeting map2k3.
• P38/MAPK signaling contributed to the suppression of miR-21a-5p on BPA-induced differentiation.
• Overexpression of MKK3 attenuated the effect of miR-21a-5p on BPA-induced 3T3-L1 differentiation.
• MiR-21a-5p overexpression attenuated BPA-induced obesity in vivo.
Childhood obesity is a metabolic disease characterized by accumulation of excessive fat. Bisphenol A (BPA), a potential obesogen compound, possesses an estrogen mimetic activity and endocrine disruption effect. MicroRNA-21a-5p (miR-21a-5p) is reported to regulate the adipogenic differentiation. Our study showed that miR-21a-5p overexpression significantly decreased the red lipid droplets and triglyceride level in BPA-induced 3T3-L1 cells. BPA induced the mRNA and protein expression levels of PPARγ, C/EBPα and adiponectin, and the induction was inhibited by miR-21a-5p mimics transfection. MiR-21a-5p mimics inhibited the GR activity, GR phosphorylation (S220, S21a-5p2, and S234), and the activation of p38/MAPK pathway, which are elevated by BPA treatment in 3T3-L1 cells. MiR-21a-5p overexpression inhibited the protein level of MKK3, but not in the mRNA level. Luciferase activity assay showed that miR-21a-5p directly targeted map2k3 3′-UTR. MKK3 overexpression attenuated the effect of miR-21a-5p mimics transfection on 3T3-L1 differentiation. We also assessed the body weight, fat mass and the content of serum lipid in rats subcutaneous injected with BPA and miR-21a-5p mimics. MiR-21a-5p overexpression attenuated BPA-induced obesity in vivo. These findings suggested that miR-21a-5p inhibited BPA induced adipocyte differentiation by targeting map2k3 through MKK3/p38/MAPK in 3T3-L1 cells, providing a potential therapeutic strategy for BPA induced obesity.
Journal: Biochemical and Biophysical Research Communications - Volume 473, Issue 1, 22 April 2016, Pages 140–146