کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1928174 | 1536772 | 2015 | 7 صفحه PDF | دانلود رایگان |

• We solved the crystal structure of POP1 protein.
• We found distinct structural difference between death domain superfamily.
• We speculate the inhibitory mechanism of POP1-mediated inflammasome formation based on the structure.
Inflammatory caspases, such as caspase-1, which is critical for the innate immune response, are activated upon the formation of a molecular complex called the inflammasome. The inflammasome is composed of three proteins, the Nod-like receptor (NLRP, NLRC or AIM2), apoptosis associated speck-loke protein containing a caspase-recruitment domain (ASC), and caspase-1. ASC is an adaptor molecule that contains an N-terminal PYD domain and a C-terminal CARD domain for interaction with other proteins. Upon activation, the N-terminal PYD of ASC homotypically interacts with the PYD domain of the Nod-like receptor, while its C-terminal CARD homotypically interacts with the CARD domain of caspase-1. PYD only protein 1 (POP1) negatively regulates inflammatory response by blocking the formation of the inflammasome. POP1 directly binds to ASC via a PYD:PYD interaction, thereby preventing ASC recruitment to Nod-like receptor NLRPs. POP1-mediated regulation of inflammation is of great biological importance. Here, we report the crystal structure of human POP1 and speculate about the inhibitory mechanism of POP1-mediated inflammasome formation based on the current structure.
Journal: Biochemical and Biophysical Research Communications - Volume 460, Issue 4, 15 May 2015, Pages 957–963