کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1935588 | 1050670 | 2008 | 5 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Proximity based GPCRs prediction in transform domain
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
علوم زیستی و بیوفناوری
بیوشیمی، ژنتیک و زیست شناسی مولکولی
زیست شیمی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this work, we predict G-protein coupled receptors (GPCRs) using hydrophobicity of amino acid sequences and Fast Fourier Transform for feature generation. We analyze whether the GPCRs classification strategy depends on the way the feature space may be exploited. Consequently, we show that the sequence pattern based information could easily be exploited in the frequency domain using proximity rather than increasing margin of separation between the classes. We thus develop a simple proximity based approach known as nearest neighbor (NN) for classifying the 17 GPCRs subfamilies. The NN classifier has outperformed the one against all implementation of support vector machine using both Jackknife and independent dataset. The results validate the importance of the understanding and efficient exploitation of the feature space. It also shows that simple classification strategies may outperform complex ones because of the efficient exploitation of the feature space.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Biochemical and Biophysical Research Communications - Volume 371, Issue 3, 4 July 2008, Pages 411-415
Journal: Biochemical and Biophysical Research Communications - Volume 371, Issue 3, 4 July 2008, Pages 411-415
نویسندگان
Asifullah Khan, M.F. Khan, Tae-Sun Choi,