کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1936965 | 1050706 | 2007 | 6 صفحه PDF | دانلود رایگان |

Fusarium graminearum produces trichothecenes in aerial hyphae, a process which is markedly suppressed by NaCl without a significant effect on fungal growth. Here we report on the involvement of kinases of the two-component osmotic signal transduction pathway in the regulation of secondary metabolism in F. graminearum. While a deletion null mutant of FgOs1 (encoding the osmosensor histidine kinase) (ΔFgOs1) produced a reduced amount of the red pigment aurofusarin and was unaltered in its ability to produce trichothecenes, deletion null mutants of FgOs4 (encoding mitogen-activated protein kinase kinase kinase; MAPKKK), FgOs5 (MAPKK), and FgOs2 (MAPK) showed markedly enhanced pigmentation and failed to produce trichothecenes in aerial hyphae. Also, the transcript levels of PKS12 and GIP2 (aurofusarin biosynthetic pathway and regulatory genes, respectively) were significantly enhanced in the ΔFgOs4, ΔFgOs5, and ΔFgOs2 mutants and were reduced in the ΔFgOs1 mutant. In addition, expression of Tri4 and Tri6 (trichothecene biosynthetic pathway and regulatory genes) and production of trichothecenes in rice medium were markedly reduced in the former three protein kinase mutants. This is the first report demonstrating the involvement of a MAPK in the regulation of secondary metabolism.
Journal: Biochemical and Biophysical Research Communications - Volume 363, Issue 3, 23 November 2007, Pages 639–644