کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1939954 | 1050771 | 2006 | 10 صفحه PDF | دانلود رایگان |

A key step decisively affecting the catalytic efficiency of copper amine oxidase is stereospecific abstraction of substrate α-proton by a conserved Asp residue. We analyzed this step by pre-steady-state kinetics using a bacterial enzyme and stereospecifically deuterium-labeled substrates, 2-phenylethylamine and tyramine. A small and temperature-dependent kinetic isotope effect (KIE) was observed with 2-phenylethylamine, whereas a large and temperature-independent KIE was observed with tyramine in the α-proton abstraction step, showing that this step is driven by quantum mechanical hydrogen tunneling rather than the classical transition-state mechanism. Furthermore, an Arrhenius-type preexponential factor ratio approaching a transition-state value was obtained in the reaction of a mutant enzyme lacking the critical Asp. These results provide strong evidence for enzyme-enhanced hydrogen tunneling. X-ray crystallographic structures of the reaction intermediates revealed a small difference in the binding mode of distal parts of substrates, which would modulate hydrogen tunneling proceeding through either active or passive dynamics.
Journal: Biochemical and Biophysical Research Communications - Volume 342, Issue 2, 7 April 2006, Pages 414–423