کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1942696 1052624 2011 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Post-transcriptional regulation of the mitochondrial H+-ATP synthase: A key regulator of the metabolic phenotype in cancer
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم کشاورزی و بیولوژیک دانش گیاه شناسی
پیش نمایش صفحه اول مقاله
Post-transcriptional regulation of the mitochondrial H+-ATP synthase: A key regulator of the metabolic phenotype in cancer
چکیده انگلیسی

A distinctive metabolic trait of tumors is their enforced aerobic glycolysis. This phenotype was first reported by Otto Warburg, who suggested that the increased glucose consumption of cancer cells under aerobic conditions might result from an impaired bioenergetic activity of their mitochondria. A central player in defining the bioenergetic activity of the cell is the mitochondrial H+-ATP synthase. The expression of its catalytic subunit β-F1-ATPase is tightly regulated at post-transcriptional levels during mammalian development and in the cell cycle. Moreover, the down-regulation of β-F1-ATPase is a hallmark of most human carcinomas. In this review we summarize our present understanding of the molecular mechanisms that participate in promoting the “abnormal” aerobic glycolysis of prevalent human carcinomas. The role of the ATPase Inhibitor Factor 1 (IF1) and of Ras-GAP SH3 binding protein 1 (G3BP1), controlling the activity of the H+-ATP synthase and the translation of β-F1-ATPase mRNA respectively in cancer cells is emphasized. Furthermore, we underline the role of mitochondrial dysfunction as a pivotal player of tumorigenesis. This article is part of a Special Issue entitled: Bioenergetics of Cancer.

Research Highlights
► Repression of the bioenergetic function of mitochondria in human tumors.
► Inhibition of oxidative phosphorylation by the ATPase Inhibitory Factor IF1 in cancer.
► Regulation of the expression of the H+-ATP synthase by RNA binding proteins.
► The tumor suppressor function of oxidative phosphorylation.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Biochimica et Biophysica Acta (BBA) - Bioenergetics - Volume 1807, Issue 6, June 2011, Pages 543–551
نویسندگان
, ,