کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1943399 | 1052663 | 2008 | 7 صفحه PDF | دانلود رایگان |
![عکس صفحه اول مقاله: Isolation and first EPR characterization of the [FeFe]-hydrogenases from green algae Isolation and first EPR characterization of the [FeFe]-hydrogenases from green algae](/preview/png/1943399.png)
Hydrogenase expression in Chlamydomonas reinhardtii can be artificially induced by anaerobic adaptation or is naturally established under sulphur deprivation. In comparison to anaerobic adaptation, sulphur-deprived algal cultures show considerably higher expression rates of the [FeFe]-hydrogenase (HydA1) and develop a 25-fold higher in vitro hydrogenase activity. Based on this efficient induction principle we have established a novel purification protocol for the isolation of HydA1 that can also be used for other green algae. From an eight liter C. reinhardtii culture 0.52 mg HydA1 with a specific activity of 741 μmol H2 min− 1 mg− 1 was isolated. Similar amounts were also purified from Chlorococcum submarinum and Chlamydomonas moewusii. The extraordinarily large yields of protein allowed a spectroscopic characterization of the active site of these smallest [FeFe]-hydrogenases for the first time. An initial analysis by EPR spectroscopy shows characteristic axial EPR signals of the CO inhibited forms that are typical for the Hox-CO state of the active site from [FeFe]-hydrogenases. However, deviations in the g-tensor components have been observed that indicate distinct differences in the electronic structure between the various hydrogenases. At cryogenic temperatures, light-induced changes in the EPR spectra were observed and are interpreted as a photodissociation of the inhibiting CO ligand.
Journal: Biochimica et Biophysica Acta (BBA) - Bioenergetics - Volume 1777, Issue 5, May 2008, Pages 410–416