کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1943510 | 1052670 | 2007 | 6 صفحه PDF | دانلود رایگان |

Following different reports on the stoichiometry and configuration of NO binding to mammalian and bacterial reduced cytochrome c oxidase aa3 (CcO), we investigated NO binding and dynamics in the active site of beef heart CcO as a function of NO concentration, using ultrafast transient absorption and EPR spectroscopy. We find that in the physiological range only one NO molecule binds to heme a3, and time-resolved experiments indicate that even transient binding to CuB does not occur. Only at very high (∼ 2 mM) concentrations a second NO is accommodated in the active site, although in a different configuration than previously observed for CcO from Paracoccus denitrificans [E. Pilet, W. Nitschke, F. Rappaport, T. Soulimane, J.-C. Lambry, U. Liebl and M.H. Vos. Biochemistry 43 (2004) 14118–14127], where we proposed that a second NO does bind to CuB. In addition, in the bacterial enzyme two NO molecules can bind already at NO concentrations of ∼ 1 μM. The unexpected differences highlighted in this study may relate to differences in the physiological relevance of the CcO–NO interactions in both species.
Journal: Biochimica et Biophysica Acta (BBA) - Bioenergetics - Volume 1767, Issue 5, May 2007, Pages 387–392