کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
194751 459799 2007 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Electrodeposition of hard magnetic films and microstructures
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی مهندسی شیمی (عمومی)
پیش نمایش صفحه اول مقاله
Electrodeposition of hard magnetic films and microstructures
چکیده انگلیسی

Electrochemical deposition of materials with hard magnetic properties in the as-deposited state is essential for the efficient integration of micro-magnetic components into MEMS devices. Here we discuss the growth process and the microstructure-magnetic properties correlation for two Co-rich alloys, Co–Ni–P and Co–Pt. Under suitable synthesis conditions, these materials exhibit perpendicular anisotropy and hard magnetic properties in the as-deposited state; in addition, such properties are maintained up to several micrometer film thickness through close control of the film microstructure. In the case of Co–Ni–P films we achieved a saturation magnetization of 1.21 T (963 emu/cm3), perpendicular coercivity up to 188 kA/m (2.36 kOe) at a thickness of 10 μm, and energy products up to 4.2 kJ/m3. Co-rich Co–Pt films were grown on several substrates – Cr, Cu(0 0 1), Cu(1 1 1), and Ru(0 0 0 1) – in order to control magnetic anisotropy and achieve optimum hard magnetic properties. Cu(1 1 1) contributes to stabilize the hexagonal hcp phase at high current density yielding excellent hard magnetic properties, although only in films thicker than 100 nm; saturation magnetization in these films was about 1.04 T (828 emu/cm3). Perpendicular coercivities up to 485.6 kA/m (6.1 kOe) were obtained in 1 μm thick film deposited at 50 mA/cm2. Ru(0 0 0 1) seed layers provide an appropriate interface structure to further facilitate the epitaxial growth of hcp films, yielding hard magnetic properties and perpendicular coercivity with a squareness ∼1 in films as thin as 10 nm. The hard magnetic properties were only marginally compromised at large film thickness. Deposition at higher current density (50 mA/cm2) favored markedly improved hard magnetic properties. The Co–Pt films on Ru exhibited perpendicular anisotropy with anisotropy constant up to 1.2 MJ/m3. The electrodeposition process was further extended to fill lithographically patterned hole arrays (850 nm diameter, center-to-center distance 2550 nm and about 700 nm thick resist), yielding arrays of micron-sized hard magnetic cylinders with perpendicular coercivity of 361 kA/m (4.54 kOe) and high squareness.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Electrochimica Acta - Volume 52, Issue 8, 10 February 2007, Pages 2755–2764
نویسندگان
, , , ,