کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1952819 | 1057233 | 2010 | 11 صفحه PDF | دانلود رایگان |

Gamma-glutamyltranspeptidases (γ-GTs) catalyze the transfer of the gamma-glutamyl moiety of glutathione and related gamma-glutamyl amides to water (hydrolysis) or to amino acids and peptides (transpeptidation) and play a key role in glutathione metabolism. Recently, γ-GTs have been considered attractive pharmaceutical targets for cancer and useful tools to produce γ-glutamyl compounds. To find out γ-GTs with special properties we have chosen microorganisms belonging to Geobacillus species which are source of several thermostable enzymes of potential interest for biotechnology. γ-GT from Geobacillus thermodenitrificans (GthGT) was cloned, expressed in Escherichia coli, purified to homogeneity and characterized. The enzyme, synthesized as a precursor homotetrameric protein of 61-kDa per subunit, undergoes an internal post-translational cleavage of the 61 kDa monomer into 40- and 21-kDa shorter subunits, which are then assembled into an active heterotetramer composed of two 40- and two 21-kDa subunits. The kinetic characterization of the hydrolysis reaction using l-glutamic acid γ-(4-nitroanilide) as the substrate reveals that the active enzyme has Km 7.6 μM and Vmax 0.36 μmol min/mg. The optimum pH and temperature for the hydrolysis activity are 7.8 and 52 °C, respectively. GthGT hydrolyses the physiological antioxidant glutathione, suggesting an involvement of the enzyme in the cellular defense mechanism against oxidative stress. Unlike other γ-GTs, the mutation of the highly conserved catalytic nucleophile, Thr353, abolishes the post-translational cleavage of the pro-enzyme, but does not completely block the hydrolytic action. Furthermore, GthGT does not show any transpeptidase activity, suggesting that the enzyme is a specialized γ-glutamyl hydrolase. The GthGT homology-model structure reveals peculiar structural features, which should be responsible for the different functional properties of the enzyme and suggests the structural bases of protein thermostability.
Journal: Biochimie - Volume 92, Issue 5, May 2010, Pages 464–474