کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
195309 | 459811 | 2008 | 6 صفحه PDF | دانلود رایگان |

Carbon-supported PdCo alloy electrocatalysts of different Pd/Co atomic ratios were simply prepared in an aqueous solution at room temperature with NH4F as a complexing agent and H3BO3 as a buffer, followed by NaBH4 reduction. As-prepared PdCo bimetallic nanoparticles show a single-phase face-centered-cubic (fcc) disordered structure, and the mean particle size is found to decrease with increase in Co content. TEM images demonstrated that the as-prepared PdCo alloy nanoparticles are well dispersed on the surface of the carbon support with a small particle size and a relatively narrow particle size distribution. For example, the average particle size of a Pd2Co1/C catalyst is ca. 3.0 nm, which is much smaller than that of the PdCo/C bimetallic nanoparticles reported by others. An activity evaluation of the oxygen reduction reaction (ORR) on as-prepared PdCo/C catalysts with a rotating disk electrode (RDE) technique indicated that the maximum ORR mass activity was observed for a Pd:Co atomic ratio of 4:1, but the highest specific activity was found on a Pd:Co atomic ratio of 2:1. Kinetic analysis reveals that the ORR on PdCo/C catalysts follows a four-electron process leading to water. Moreover, the PdCo/C catalyst exhibited much higher methanol tolerance during the ORR than the Pt/C catalyst, assessing that it may function as a methanol-tolerant cathode catalyst in a direct methanol fuel cell (DMFC).
Journal: Electrochimica Acta - Volume 53, Issue 22, 20 September 2008, Pages 6662–6667