کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1953351 | 1057268 | 2007 | 11 صفحه PDF | دانلود رایگان |
Pacu (Piaractus mesopotamicus Holmberg, 1887, Characiformes) dwells in waters of Pantanal, in which it has adapted for alternate concentrations of dissolved oxygen. Intracellular antioxidant protection should be vital for such an adaptation. Accordingly, we found that cytosol from liver of pacu has the highest antioxidant glutathione peroxidase activity so far reported for fish and murine species. To clarify whether this activity was due to a selenium independent glutathione S-transferase or to a glutathione peroxidase, we purified it and studied its kinetics. The substrates cumene hydroperoxide and hydrogen peroxide were promptly reduced by the enzyme, but peroxidized phosphatidylcholine had to undergo previous fatty acid removal with phospholipase A2. Augmenting concentrations (from 2 to 6 mM) of reduced glutathione activated the pure enzyme. Curves of velocity versus different micromolar concentrations of hydrogen peroxide in the presence of 2, 4 or 8 mM reduced glutathione indicated that at least 2.5 mM reduced glutathione should be available in vivo for an efficient continuous destruction of micromolar concentrations of hydrogen peroxide by this peroxidase. Molecular exclusion HPLC and SDS–polyacrylamide gel electrophoresis indicated that the purified peroxidase is a homotetramer. Data from internal sequences showed selenocysteine in its primary structure and that the enzyme was a homologue of the type-1 glutathione peroxidase found in rat, bull, trout, flounder and zebra fish. Altogether, our data establish that in liver cells of pacu, a hypoxia-tolerant fish from South America, there are high levels of a cytosolic GPX-1 capable of quenching hydrogen peroxide and fatty acid peroxides, providing an effective antioxidant action.
Journal: Biochimie - Volume 89, Issue 11, November 2007, Pages 1332–1342