کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1976527 | 1060695 | 2007 | 7 صفحه PDF | دانلود رایگان |

Circannual hibernation is a biological adaptation to periods of cold and food shortage and the role of the brain in its control is poorly understood. An SSH library of hibernating bat brains (Rhinolophus ferrumequinum) was constructed in order to explore the molecular mechanism of hibernation. An up-regulated gene, PRL-2, was obtained from hibernating bat brains. PRL-2 is a member of PTP family and has an important function in controlling cell growth. Alignment of sequences showed that PRL-2 is highly conserved among species, including two species of hibernating bats (R. ferrumequinum and Myotis ricketti). Moreover, Maximum Likelihood Analysis suggested that it may experience strong selection pressure leading to functional constraint in evolution, which indicated the significance of PRL-2 in normal bio-function. RQ-PCR was performed and statistical analysis suggested that PRL-2 exhibited distinct differential expression patterns in different organs during hibernation. In heart, fat and brain tissue of hibernating bats, the transcriptional level of PRL-2 increased almost 170%, 35% and 12% respectively. However, in muscle it decreased nearly 70%. The change of mRNA level of PRL-2 in heart tissue of hibernating bats was significantly higher than that in heart tissue of active controls (P = 0.043). However, the regulation mechanism of differential expression of PRL-2 and the signal pathway involved are still unknown.
Journal: Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology - Volume 148, Issue 4, December 2007, Pages 375–381