کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1979964 1539385 2016 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
AP endonuclease 1 prevents the extension of a T/G mismatch by DNA polymerase β to prevent mutations in CpGs during base excision repair
موضوعات مرتبط
علوم زیستی و بیوفناوری بیوشیمی، ژنتیک و زیست شناسی مولکولی زیست شیمی
پیش نمایش صفحه اول مقاله
AP endonuclease 1 prevents the extension of a T/G mismatch by DNA polymerase β to prevent mutations in CpGs during base excision repair
چکیده انگلیسی

Dynamics of DNA methylation and demethylation at CpG clusters are involved in gene regulation. CpG clusters have been identified as hot spots of mutagenesis because of their susceptibility to oxidative DNA damage. Damaged Cs and Gs at CpGs can disrupt a normal DNA methylation pattern through modulation of DNA methylation and demethylation, leading to mutations and deregulation of gene expression. DNA base excision repair (BER) plays a dual role of repairing oxidative DNA damage and mediating an active DNA demethylation pathway on CpG clusters through removal of a T/G mismatch resulting from deamination of a 5mC adjacent to a guanine that can be simultaneously damaged by oxidative stress. However, it remains unknown how BER processes clustered lesions in CpGs and what are the consequences from the repair of these lesions. In this study, we examined BER of an abasic lesion next to a DNA demethylation intermediate, the T/G mismatch in a CpG dinucleotide, and its effect on the integrity of CpGs. Surprisingly, we found that the abasic lesion completely abolished the activity of thymine DNA glycosylase (TDG) for removing the mismatched T. However, we found that APE1 could still efficiently incise the abasic lesion leaving a 3-terminus mismatched T, which was subsequently extended by pol β. This in turn resulted in a C to T transition mutation. Interestingly, we also found that APE1 3′–5′ exonuclease activity efficiently removed the mismatched T, thereby preventing pol β extension of the mismatched nucleotide and the resulting mutation. Our results demonstrate a crucial role of APE1 3′–5′ exonuclease activity in combating mutations in CpG clusters caused by an intermediate of DNA demethylation during BER.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: DNA Repair - Volume 43, July 2016, Pages 89–97
نویسندگان
, , , , ,