کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1984082 1539949 2009 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Electron microscopy morphology of the mitochondrial network in human cancer
موضوعات مرتبط
علوم زیستی و بیوفناوری بیوشیمی، ژنتیک و زیست شناسی مولکولی زیست شیمی
پیش نمایش صفحه اول مقاله
Electron microscopy morphology of the mitochondrial network in human cancer
چکیده انگلیسی

Mitochondria have been implicated in the process of carcinogenesis, which includes alterations of cellular metabolism and cell death pathways. The aim of this review is to describe and analyze the electron microscopy morphology of the mitochondrial network in human cancer. The structural mitochondrial alterations in human tumors are heterogeneous and not specific for any neoplasm. These findings could be representing an altered structural and functional mitochondrial network. The mitochondria in cancer cells, independently of histogenesis, predominantly are seen with lucent-swelling matrix associated with disarrangement and distortion of cristae and partial or total cristolysis and with condensed configuration in minor scale. Mitochondrial changes are associated with mitochondrial-DNA mutations, tumoral microenvironment conditions and mitochondrial fusion–fission disequilibrium. Functionally, the structural alterations suppose the presence of hypoxia-tolerant and hypoxia-sensitive cancer cells. Possibly, hypoxia-tolerant cells are related with mitochondrial condensed appearance and are competent to produce adequate amount of ATP by mitochondrial respiration. Hypoxia-sensitive cells are linked with lucent-swelling and cristolysis mitochondria profile and have an inefficient or null oxidative phosphorylation, which consequently use the glycolytic pathway to generate energy. Additionally, mitochondrial fragmentation is associated with apoptosis; however, alterations in the mitochondrial network are linked with the reduction in sensitivity to apoptosis induces and/or pro-apoptotic conditions. Pharmacological approaches designed to act on both glycolysis and oxidative phosphorylation can be considered as a new approach to selectively kill cancer cells.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: The International Journal of Biochemistry & Cell Biology - Volume 41, Issue 10, October 2009, Pages 2062–2068
نویسندگان
,