کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1989662 1540662 2014 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Lysine biotinylation and methionine oxidation in the heat shock protein HSP60 synergize in the elimination of reactive oxygen species in human cell cultures
موضوعات مرتبط
علوم زیستی و بیوفناوری بیوشیمی، ژنتیک و زیست شناسی مولکولی زیست شیمی
پیش نمایش صفحه اول مقاله
Lysine biotinylation and methionine oxidation in the heat shock protein HSP60 synergize in the elimination of reactive oxygen species in human cell cultures
چکیده انگلیسی

Previous studies suggest that the number of proteins containing covalently bound biotin is larger than previously thought. Here, we report the identity of some of these proteins. Using mass spectrometry, we discovered 108 novel biotinylation sites in the human embryonic kidney HEK293 cell proteome; members of the heat shock protein (HSP) superfamily were overrepresented among the novel biotinylated proteins. About half of the biotinylated proteins also displayed various degrees of methionine oxidation, which is known to play an important role in the defense against reactive oxygen species; for biotinylated HSPs, the percent of methionine sulfoxidation approached 100%. Protein structure analysis suggests that methionine sulfoxides localize in close physical proximity to the biotinylated lysines on the protein surface. Mass spectrometric analysis revealed that between one and five of the methionine residues in the C-terminal KEEKDPGMGAMGGMGGGMGGGMF motif are oxidized in HSP60. The likelihood of methionine sulfoxidation is higher if one of the adjacent lysine residues is biotinylated. Knockdown of HSP60 caused a 60% increase in the level of reactive oxygen species in fibroblasts cultured in biotin-sufficient medium. When HEK293 cells were transferred from biotin-sufficient medium to biotin-free medium, the level of reactive oxygen species increased by >9 times compared with baseline controls and a time-response relationship was evident. High levels of methionine sulfoxidation coincided with cell cycle arrest in the G0/G1 and S phases in biotin-depleted cells. We conclude that biotinylation of lysines synergizes with sulfoxidation of methionines in heat shock proteins such as HSP60 in the defense against reactive oxygen species.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: The Journal of Nutritional Biochemistry - Volume 25, Issue 4, April 2014, Pages 475–482
نویسندگان
, , , ,