کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
2014895 | 1541957 | 2013 | 8 صفحه PDF | دانلود رایگان |

Plant hormones, including abscisic acid (ABA) and cytokinins (CKs), fluctuate as a result of excess metal exposure. Changes in hormonal concentration regulate plant growth and may also signal activation of metal chelators. The grass Deschampsia cespitosa was dosed with either Ni or Cd or pulsed with exogenous ABA. The roots were analyzed for ABA and CKs and for multiple potential metal chelators including: amino acids, nicotianamine (NA), and phytochelatins (PCs). They were quantified after 3 h and after 7 days, using LC-ESI MS/MS. The Ni treatment caused no measurable change in ABA or CK concentration; however, an increase in NA was documented. The Cd treatment resulted in a short-term ABA increase followed by a reduction in CKs and an increase in PC concentration. An exogenous ABA pulse in non-metal challenged plants induced changes in CKs and PCs that followed those of Cd treatment. Ni and Cd stress resulted in distinctly different detoxification responses. Since the reaction of CKs and putative metal chelators to Cd stress can be mimicked by an exogenous ABA pulse, it is suggested that ABA acts as a stress signal, resulting in reduced growth by way of decreased CK concentration and reduced metal toxicity through increased PC production.
► Ni and Cd stress cause differential changes in ABA and cytokinin concentrations.
► Cd stress results in an ABA peak followed by an increase in phytochelatin content.
► Exogenous ABA treatments also cause an increase in phytochelatin content.
► Suggests metal stress specific ABA signaling.
Journal: Plant Physiology and Biochemistry - Volume 64, March 2013, Pages 84–91