کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
2068935 | 1078366 | 2009 | 10 صفحه PDF | دانلود رایگان |

In the genetic disease cystic fibrosis (CF), the most common mutation F508del promotes the endoplasmic reticulum (ER) retention of misfolded CF proteins. Furthermore, in homozygous F508del-CFTR airway epithelial cells, the histamine Ca2+ mobilization is abnormally increased. Because the uptake of Ca2+ by mitochondria during Ca2+ influx or Ca2+ release from ER stores may be crucial for maintaining a normal Ca2+ homeostasis, we compared the mitochondria morphology and distribution by transmission electron microscopy technique and the mitochondria membrane potential variation (ΔΨmit) using a fluorescent probe (TMRE) on human CF (CF-KM4) and non-CF (MM39) tracheal serous gland cell lines. Confocal imaging of Rhod-2–AM-loaded or of the mitochondrial targeted cameleon 4mtD3cpv-transfected human CF and non-CF cells, were used to examine the ability of mitochondria to sequester intracellular Ca2+. The present study reveals that (i) the mitochondria network is fragmented in F508del-CFTR cells, (ii) the ΔΨmit of CF mitochondria is depolarized compared non-CF mitochondria, and (iii) the CF mitochondria Ca2+ uptake is reduced compared non-CF cells. We propose that these defects in airway epithelial F508del-CFTR cells are the consequence of mitochondrial membrane depolarization leading to a deficient mitochondrial Ca2+ uptake.
Journal: Mitochondrion - Volume 9, Issue 4, July 2009, Pages 232–241