کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
2086345 1545530 2016 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Yeast cell disruption strategies for recovery of intracellular bio-active compounds — A review
ترجمه فارسی عنوان
استراتژی های تخریب سلول های مخمری برای بازیابی ترکیبات زیست فعال داخل سلولی بازنگری
کلمات کلیدی
مخمر بیکر، اختلال در سلول، مکانیکی، غیر مکانیکی مصرف انرژی، فرایند فرآیند پایین
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم کشاورزی و بیولوژیک دانش تغذیه
چکیده انگلیسی


• Alternative methods for bio-active's extraction from yeast cell
• Mechanical techniques acquired a high recovery but a poor selectivity.
• Non-mechanical techniques were more gentle and selective.
• Recovery, selective and energy consumption influenced the choice of method.
• Effectiveness of cell rupture techniques affected process economics.

Yeasts are cheap, attractive and easily available residual sources of valuable bio-active compounds. Extraction of these compounds requires to break the yeast cells. So efficient damage of cell wall has become an important issue to be resolved. The aim of this paper is to review the potential of some emerging cell disruption techniques for recovery of intracellular bio-active compounds from Baker's yeast including mechanical (bead mill, high pressure homogenization, ultrasonication), and non-mechanical (electrical, physical, chemical and enzymatic) techniques, as well as some newly developed methods. The advantages and drawbacks of different cell disruption methods were summarized by considering the energy consumption, the interaction of the disruption methods with downstream operations and the process economics of alternative strategies. Finally, some future directions for research areas are proposed.Industrial relevanceWine making process entails the generation of significant amount of waste yeast, which represents an attractive source of valuable compounds that has been relatively unexploited to date. To retain the valuable cell content, effective cell disruption strategies are needed to break the rigid yeast cell walls. This review summarizes the state of the art of some emerging cell disruption techniques for recovery of intracellular bio-active compounds from yeasts including mechanical (bead mill, high pressure homogenizer, ultrasonication), and non-mechanical (electrical, physical, chemical and enzymatic) techniques. Thereby, it identifies the process economics of alternative strategies by considering the interaction of the disruption methods with downstream operations as well as the current situations and future research needs.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Innovative Food Science & Emerging Technologies - Volume 36, August 2016, Pages 181–192
نویسندگان
, , , , ,