کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
210644 461719 2010 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Ash deposition behavior of cynara–coal blends in a PF pilot furnace
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی مهندسی شیمی (عمومی)
پیش نمایش صفحه اول مقاله
Ash deposition behavior of cynara–coal blends in a PF pilot furnace
چکیده انگلیسی

Biomass is nowadays considered as a very interesting option to substitute conventional fossil fuels. Although biomass could be burnt alone, it can also be co-fired together with coal in existing power plants, at a lower cost. One of the main problems related with biomass used in thermal applications is its propensity to form ash deposits. Slagging and fouling caused by ash may derive in heat transfer losses, corrosion in the tubes or even boiler shutdown. A deposition probe has been designed and proved to study this phenomenon. Several combustion tests have been performed in a 500 kWth PF pilot test rig burning cynara blended with two coals at different shares in energy basis. Different analyses have been performed to those ash samples collected during the tests. From the results, it is observed that the quantity of collected ash in the deposition probe did not increase noticeably when increasing the biomass share up to 15% in energy basis. However, the opposite was detected in Spanish coal tests, due to its higher ash content. Major components of ash samples were aluminosilicates coming from coal clays. These components may act as protective ash coal compounds, but inorganic elements such as calcium or potassium also appeared and their presence increased with the biomass share. Although chlorine content in cynara was high, no important presence of this element was encountered in none of the ash samples collected. Experimental results agree with other experimental studies showing that aluminosilicates from coals may act as protective ash compounds, preventing chlorine deposition on heat transfer surfaces. The beneficial effect is also detected at pulverized fuel conditions.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Fuel Processing Technology - Volume 91, Issue 11, November 2010, Pages 1576–1584
نویسندگان
, , ,