کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
210949 461736 2009 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Fischer–Tropsch synthesis over cobalt dispersed on carbon nanotubes-based supports and activated carbon
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی مهندسی شیمی (عمومی)
پیش نمایش صفحه اول مقاله
Fischer–Tropsch synthesis over cobalt dispersed on carbon nanotubes-based supports and activated carbon
چکیده انگلیسی

Carbon nanotubes (CNTs) and the ones grown on MgO and alumina are used as supports for cobalt catalyst in Fischer–Tropsch (FT) synthesis. Carbon nanotubes were synthesized by chemical vapor deposition of methane on 5.0 wt.% iron on MgO or alumina at 950 °C. The carbon nanotubes were characterized by SEM and TEM microscopy and Raman spectroscopy. Cobalt nitrate was impregnated onto the supports by impregnation, and the samples were dried and reduced in-situ at 400 °C for 12 h, and then FT synthesis was carried out in a fixed-bed reactor. The catalysts were characterized by BET surface area measurement, TPR and TPD. The effect of carbon nanotubes as cobalt support on CO conversion, product selectivity, and olefin to paraffin ratio of FT synthesis was investigated and compared with activated carbon as well as Al2O3, as a traditional support. The results revealed that the activity of the Co/CNT catalyst was improved by 22%, compared to the conventional Co/alumina catalysts. Also the cobalt supported on CNTs grown on MgO (Co/CNT–MgO) shows the highest selectivity to C5+ as the most desired FTS products. The C5+ selectivity enhancement was about 37, 34, 17, and 77% as compared to the Co/CNT, Co/alumina, Co/CNTs-alumina, and Co/activated carbon, respectively. Also the olefin/paraffin ratio on the Co/CNTs-MgO catalyst is about 7.7 times higher than the conventional cobalt catalysts. It seems that the degree of reduction of cobalt is higher when supported on CNTs than on alumina. This leads to higher FTS activity. Also, the particle size distribution of the cobalt is affected by the CNT–MgO support leading to higher C5+ selectivity.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Fuel Processing Technology - Volume 90, Issue 10, October 2009, Pages 1214–1219
نویسندگان
, , ,