کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
240699 1427924 2011 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Flame spread along a thin solid randomly distributed combustible and noncombustible areas
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی مهندسی شیمی (عمومی)
پیش نمایش صفحه اول مقاله
Flame spread along a thin solid randomly distributed combustible and noncombustible areas
چکیده انگلیسی

Flame spread route in fire strongly depends on distribution of combustible materials. Two types of scenario are considered in flame spread when combustible materials randomly distributed; one case is that flame spreads and combustible materials burn out, and the other case is that flame self-extinguishes on the way. The threshold of burning out or self-extinguishing may be determined by quantity of combustible materials and their placement in space. Our objectives are to clarify the characteristics and threshold of flame spread. In this paper, we examine non-uniform flame spread in open air along a thin combustible solid with randomly distributed pores, which are considered as noncombustible space. Experimental results show that the flame spread rate for S ≦ 1 (S ≡ d/Lh, S: scale ratio, d: pore-scale, Lh: pre-heat length ahead of flame leading edge measured by using a shadowgraph method) increases with increasing the porosity and reaches maximum value approximately at 20–30% of porosity, while the flame spread rate for S > 1 is almost constant. Over 40% of porosity, the flame spread rate for both S ≦ 1 and S > 1 decreases. The flame cannot spread and completely self-extinguish over 60% of porosity independently with pore-scale and shape. The threshold of flame spread is related with the average-number of slit, Ns, which is made by connecting each pores. The Ns as the threshold of flame spread is unity for S > 1, while the modified average-number of slit (Ns × S) becomes two for S ≦ 1.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Proceedings of the Combustion Institute - Volume 33, Issue 2, 2011, Pages 2449–2455
نویسندگان
, , ,