کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
2413527 1552025 2016 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Previous land use and climate influence differences in soil organic carbon following reforestation of agricultural land with mixed-species plantings
ترجمه فارسی عنوان
استفاده از زمین های قبلی و تاثیر آب و هوا بر تفاوت های موجود در کربن آلی خاک پس از جنگل زدایی از زمین های کشاورزی با گیاهان مخلوط
کلمات کلیدی
کربن آلی خوب مقاوم در برابر کربن آلی کربن ارگانیک هوموس، بستر کارخانه، تداخل کربن، کاشت های زیست محیطی، پرورش ماهی
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم کشاورزی و بیولوژیک علوم زراعت و اصلاح نباتات
چکیده انگلیسی


• Factors influencing change in soil carbon after reforestation were assessed.
• Key factors were previous land use, initial soil carbon stock and climate.
• Previously-cropped sites accumulated more soil carbon than previously-grazed sites.
• Results can inform development of policy and establishment of new plantings.

Reforestation of agricultural land with mixed-species environmental plantings (native trees and shrubs) can contribute to mitigation of climate change through sequestration of carbon. Although soil carbon sequestration following reforestation has been investigated at site- and regional-scales, there are few studies across regions where the impact of a broad range of site conditions and management practices can be assessed. We collated new and existing data on soil organic carbon (SOC, 0–30 cm depth, N = 117 sites) and litter (N = 106 sites) under mixed-species plantings and an agricultural pair or baseline across southern and eastern Australia. Sites covered a range of previous land uses, initial SOC stocks, climatic conditions and management types. Differences in total SOC stocks following reforestation were significant at 52% of sites, with a mean rate of increase of 0.57 ± 0.06 Mg C ha−1 y−1. Increases were largely in the particulate fraction, which increased significantly at 46% of sites compared with increases at 27% of sites for the humus fraction. Although relative increase was highest in the particulate fraction, the humus fraction was the largest proportion of total SOC and so absolute differences in both fractions were similar. Accumulation rates of carbon in litter were 0.39 ± 0.02 Mg C ha−1 y−1, increasing the total (soil + litter) annual rate of carbon sequestration by 68%. Previously-cropped sites accumulated more SOC than previously-grazed sites. The explained variance differed widely among empirical models of differences in SOC stocks following reforestation according to SOC fraction and depth for previously-grazed (R2 = 0.18–0.51) and previously-cropped (R2 = 0.14–0.60) sites. For previously-grazed sites, differences in SOC following reforestation were negatively related to total SOC in the pasture. By comparison, for previously-cropped sites, differences in SOC were positively related to mean annual rainfall. This improved broad-scale understanding of the magnitude and predictors of changes in stocks of soil and litter C following reforestation is valuable for the development of policy on carbon markets and the establishment of future mixed-species environmental plantings.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Agriculture, Ecosystems & Environment - Volume 227, 1 July 2016, Pages 61–72
نویسندگان
, , , , , , , , , , , ,