کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
2414790 1103929 2011 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Elevated atmospheric CO2 and drought effects on leaf gas exchange properties of barley
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم کشاورزی و بیولوژیک علوم زراعت و اصلاح نباتات
پیش نمایش صفحه اول مقاله
Elevated atmospheric CO2 and drought effects on leaf gas exchange properties of barley
چکیده انگلیسی

Atmospheric CO2 concentration (Ca) is rising, predicted to cause global warming, and alter precipitation patterns. During 1994, spring barley (Hordeum vulgare L. cv. Alexis) was grown in a strip-split-plot experimental design to determine the effects that the main plot Ca treatments [A: Ambient at 370 μmol (CO2) mol−1; E: Enriched with free-air CO2 enrichment (FACE) at ∼550 μmol (CO2) mol−1] had on several gas exchange properties of fully expanded sunlit primary leaves. The interacting strip-split-plot irrigation treatments were Dry or Wet [50% (D) or 100% (W) replacement of potential evapotranspiration] at ample nitrogen (261 kg N ha−1) and phosphorous (29 kg P ha−1) fertility. Elevated Ca facilitated drought avoidance by reducing stomatal conductance (gs) by 34% that conserved water and enabled stomata to remain open for a longer period into a drought. This resulted in a 28% reduction in drought-induced midafternoon depression in net assimilation rate (A). Elevated Ca increased A by 37% under Dry and 23% under Wet. Any reduction in A under Wet conditions occurred because of nonstomatal limitations, whereas under Dry it occurred because of stomatal limitations. Elevated Ca increased the diurnal integral of A (A′) that resulted in an increase in the seasonal-long integral of A′ (A″) for barley leaves by 12% (P = 0.14) under both Dry and Wet – 650, 730, 905 and 1020 ± 65 g (C) m−2 y−1 for AD, ED, AW and EW treatments, respectively. Elevated Ca increased season-long average dry weight (DWS; crown, shoots) by 14% (P = 0.02), whereas deficit irrigation reduced DWS by 7% (P = 0.06), although these values may have been affected by a short but severe pea aphid [Acyrthosiphon pisum (Harris)] infestation. Hence, an elevated-Ca-based improvement in gas exchange properties enhanced growth of a barley crop.


► Elevated Ca improved gas exchange properties of barley by increasing both drought avoidance and tolerance mechanisms.
► Improved water relations reduced water-stress-induced midafternoon depressions in carbon gain, thereby resulting in greater daily and seasonal carbon gain.
► Good agreement occurred between results for barley and wheat.
► Adaptations to global climate change for a dryland cereal grain production system may be a change in timing of sowing or an increase in the number of fallow years required to balance consumptive water use by the crop with soil–water recharge by the environment.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Agriculture, Ecosystems & Environment - Volume 144, Issue 1, November 2011, Pages 390–404
نویسندگان
, , , ,