کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
2415610 1552141 2007 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Influence of no-tillage on the distribution and lability of phosphorus in Finnish clay soils
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم کشاورزی و بیولوژیک علوم زراعت و اصلاح نباتات
پیش نمایش صفحه اول مقاله
Influence of no-tillage on the distribution and lability of phosphorus in Finnish clay soils
چکیده انگلیسی

No-tillage (NT) is a method adopted to reduce erosion and particulate phosphorus (P) load from arable land to watercourses. However, it has been found to increase the loss of dissolved P with surface runoff, but the reasons for that have rarely been examined in detail. The objective of the present study was to determine the chemical factors explaining this response by investigating the impact of NT on the type and distribution of P reserves as well as on organic carbon (C) in the 0–35 cm topsoil layer of clay soil profiles (Vertic Cambisols). Soil samples were taken from two experimental fields (Jokioinen and Aurajoki) at 0–5, 5–20 and 20–35 cm depths in conventionally tilled (CT) and non-tilled (for 4–5 years) plots. The plots had been cultivated and fertilized according to the common field practices in Finland (15–18 kg P and 100–128 kg N ha−1 year−1).Inorganic and organic P reserves characterized by a modified Chang and Jackson fractionation procedure were not significantly affected by the cultivation methods. However, in the uppermost soil layer (0–5 cm) in NT of the Jokioinen field, the labile P determined by water extraction (Pw) increased significantly, whereas the increase in P extracted with acid ammonium acetate (PAAC) remained statistically insignificant. The increase in labile P coincided with a significant increase in organic carbon (C), which supports the theory that competition between organic anions and phosphate for the same sorption sites on oxide surfaces will enhance the lability of soil P. In the Aurajoki field with distinct soil cracking, Pw and PAAC were not affected by NT in the uppermost soil layer, but they increased in the deepest soil layer (20–35 cm) concomitantly with an increase in Al-bound P and organic C. However, the increases were not statistically significant. In both fields, soil acidification due to the repeated application of N fertilizers at a shallow soil depth as well as the accumulation of organic C lowered pH of the uppermost soil layer in NT compared to the deeper soil layers. The results indicated that even short-term NT can increase the labile P in clay soil. However, further studies are needed to assess the long-term changes in lability of surface soil P and, consequently, the possible need for readjustment of the fertilization level in NT.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Agriculture, Ecosystems & Environment - Volume 120, Issues 2–4, May 2007, Pages 299–306
نویسندگان
, , , , , ,