کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
2436164 1107280 2013 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A new approach to generate a safe double-attenuated Plasmodium liver stage vaccine
موضوعات مرتبط
علوم زیستی و بیوفناوری ایمنی شناسی و میکروب شناسی انگل شناسی
پیش نمایش صفحه اول مقاله
A new approach to generate a safe double-attenuated Plasmodium liver stage vaccine
چکیده انگلیسی


• Genetically attenuated Plasmodium berghei parasites for vaccination trials have been generated.
• Double attenuation increases safety of vaccination.
• This new approach of genetic attenuation allows parasite development to the schizont stage.
• Vaccination with the newly generated double-attenuated parasite strain induces sterile protection.

Recently it has been shown in rodent malaria models that immunisation with genetically attenuated Plasmodium parasites can confer sterile protection against challenge with virulent parasites. For the mass production of live attenuated Plasmodium parasites for vaccination, safety is a prerequisite. Knockout of a single gene is not sufficient for such a strategy since the parasite can likely compensate for such a genetic modification and a single surviving parasite is sufficient to kill an immunised individual. Parasites must therefore be at least double-attenuated when generating a safe vaccine strain. Genetic double-attenuation can be achieved by knocking out two essential genes or by combining a single gene knockout with the expression of a protein toxic for the parasite. We generated a double-attenuated Plasmodium berghei strain that is deficient in fatty acid synthesis by the knockout of the pdh-e1α gene, introducing a second attenuation by the liver stage-specific expression of the pore-forming bacterial toxin perfringolysin O. With this double genetically attenuated parasite strain, a superior attenuation was indeed achieved compared with single-attenuated strains that were either deficient in pyruvate dehydrogenase (PDH)-E1 or expressed perfringolysin O. In vivo, both single-attenuated strains resulted in breakthrough infections even if low to moderate doses of sporozoites (2,000–5,000) were administered. In contrast, the double genetically attenuated parasite strain, given at moderate doses of 5,000 sporozoites, did not result in blood stage infection and even when administered at 5- to 20-fold higher doses, only single and delayed breakthrough infections were observed. Prime booster immunisation with the double genetically attenuated parasite strain completely protected a susceptible mouse strain from malaria and even a single immunisation conferred protection in some cases and lead to a markedly delayed onset of blood stage infection in others. Importantly, premature rupture of the parasitophorous vacuole membrane by liver stage-specific perfringolysin O expression did not induce host cell death and soluble parasite proteins, which are released into the host cell cytoplasm, have the potential to be processed and presented via MHC class I molecules. This, in turn, might support immunological responses against Plasmodium-infected hepatocytes.

Figure optionsDownload high-quality image (64 K)Download as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal for Parasitology - Volume 43, Issue 6, May 2013, Pages 503–514
نویسندگان
, , , , , , , , ,