کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
2436616 1107329 2009 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Morphology and kinetics of the three distinct phases of red blood cell invasion by Plasmodium falciparum merozoites
موضوعات مرتبط
علوم زیستی و بیوفناوری ایمنی شناسی و میکروب شناسی انگل شناسی
پیش نمایش صفحه اول مقاله
Morphology and kinetics of the three distinct phases of red blood cell invasion by Plasmodium falciparum merozoites
چکیده انگلیسی

The invasion of red blood cells (RBCs) is an essential event in the life cycle of all malaria-causing Plasmodium parasites; however, there are major gaps in our knowledge of this process. Here, we use video microscopy to address the kinetics of RBC invasion in the human malaria parasite Plasmodium falciparum. Under in vitro conditions merozoites generally recognise new target RBCs within 1 min of their release from their host RBC. Parasite entry ensues and is complete on average 27.6 s after primary contact. This period can be divided into two distinct phases. The first is an ∼11 s ‘pre-invasion’ phase that involves an often dramatic RBC deformation and recovery process. The second is the classical ‘invasion’ phase where the merozoite becomes internalised within the RBC in a ∼17 s period. After invasion, a third ‘echinocytosis’ phase commences when about 36 s after every successful invasion a dramatic dehydration-type morphology was adopted by the infected RBC. During this phase, the echinocytotic effect reached a peak over the next 23.4 s, after which the infected RBC recovered over a 5–11 min period. By then the merozoite had assumed an amoeboid-like state and was apparently free in the cytoplasm. A comparison of our data with that of an earlier study of the distantly related primate parasite Plasmodium knowlesi indicated remarkable similarities, suggesting that the kinetics of invasion are conserved across the Plasmodium genus. This study provides a morphological and kinetic framework onto which the invasion-associated physiological and molecular events can be overlaid.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal for Parasitology - Volume 39, Issue 1, January 2009, Pages 91–96
نویسندگان
, ,