کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
2453525 1554226 2007 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Assessing the convergence of Markov Chain Monte Carlo methods: An example from evaluation of diagnostic tests in absence of a gold standard
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم کشاورزی و بیولوژیک علوم دامی و جانورشناسی
پیش نمایش صفحه اول مقاله
Assessing the convergence of Markov Chain Monte Carlo methods: An example from evaluation of diagnostic tests in absence of a gold standard
چکیده انگلیسی

The accessibility of Markov Chain Monte Carlo (MCMC) methods for statistical inference have improved with the advent of general purpose software. This enables researchers with limited statistical skills to perform Bayesian analysis. Using MCMC sampling to do statistical inference requires convergence of the MCMC chain to its stationary distribution. There is no certain way to prove convergence; it is only possible to ascertain when convergence definitely has not been achieved. These methods are rather subjective and not implemented as automatic safeguards in general MCMC software. This paper considers a pragmatic approach towards assessing the convergence of MCMC methods illustrated by a Bayesian analysis of the Hui–Walter model for evaluating diagnostic tests in the absence of a gold standard. The Hui–Walter model has two optimal solutions, a property which causes problems with convergence when the solutions are sufficiently close in the parameter space. Using simulated data we demonstrate tools to assess the convergence and mixing of MCMC chains using examples with and without convergence. Suggestions to remedy the situation when the MCMC sampler fails to converge are given. The epidemiological implications of the two solutions of the Hui–Walter model are discussed.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Preventive Veterinary Medicine - Volume 79, Issues 2–4, 16 May 2007, Pages 244–256
نویسندگان
, , , ,