کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
2486271 | 1114379 | 2010 | 12 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Molecular Dynamics Simulations of Hydrotropic Solubilization and Self-Aggregation of Nicotinamide
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
علوم پزشکی و سلامت
داروسازی، سم شناسی و علوم دارویی
اکتشاف دارویی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Hydrotropy is a phenomenon where the presence of a large quantity of one solute enhances the solubility of another solute. The mechanism of this phenomenon remains elusive and a topic of debate. This study employed molecular dynamics simulation to investigate the hydrotropic mechanism of a model system consisting of a hydrotropic agent, nicotinamide (NA), a poorly water-soluble solute, PG-300995 (PG), and water. Our study demonstrates that NA and PG undergo significant aggregation in the aqueous solution, a result correlating closely to the self-aggregation of NA under the same conditions. The correlations are found both structurally and dynamically, suggesting that the self-aggregation of NA may be a prerequisite, or at least a major contributor, to its hydrotropic effects. The self-aggregation of NA allows the segregation of the hydrophobic solute from water, a key step to ease the energy increase to the system. Energetic evidences directly show that the hydrotropic solubilization is favored in the presence of NA aggregation. These results are in strong support of the molecular aggregation hypothesis for hydrotropic solubilization. Additionally, it is found that the restoration of water-water HBs from the interference of the NA and PG molecules plays an important role for the aggregation. The HBs between the solute and the hydrotrope may contribute, but is not vital, to the aggregation and hence the hydrotropic effects. The dynamic data confirm that the aggregates, while remain in liquid state, are much more active dynamically than a pure NA amorphous/liquid phase under the same temperature and pressure. By equilibrating an NA amorphous agglomerate with water, it is found that the aggregation state, rather than an NA-water two phase system, is the equilibrium state of the NAÂ +Â water system.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Pharmaceutical Sciences - Volume 99, Issue 7, July 2010, Pages 3048-3059
Journal: Journal of Pharmaceutical Sciences - Volume 99, Issue 7, July 2010, Pages 3048-3059
نویسندگان
Yong Cui, Chenyue Xing, Yingqing Ran,