کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
2511831 1557910 2016 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Vascular and angiogenic activities of CORM-401, an oxidant-sensitive CO-releasing molecule
موضوعات مرتبط
علوم پزشکی و سلامت داروسازی، سم شناسی و علوم دارویی داروشناسی
پیش نمایش صفحه اول مقاله
Vascular and angiogenic activities of CORM-401, an oxidant-sensitive CO-releasing molecule
چکیده انگلیسی

Carbon monoxide (CO) is generated by heme oxygenase-1 (HO-1) and displays important signaling, anti-apoptotic and anti-inflammatory activities, indicating that pharmacological agents mimicking its action may have therapeutic benefit. This study examined the biochemical and pharmacological properties of CORM-401, a recently described CO-releasing molecule containing manganese as a metal center. We used in vitro approaches, ex-vivo rat aortic rings and the EA.hy926 endothelial cell line in culture to address how CORM-401 releases CO and whether the compound modulates vascular tone and pro-angiogenic activities, respectively. We found that CORM-401 released up to three CO/mole of compound depending on the concentration of the acceptor myoglobin. Oxidants such as H2O2, tert-butyl hydroperoxide or hypochlorous acid increased the CO liberated by CORM-401. CORM-401 also relaxed pre-contracted aortic rings and vasorelaxation was enhanced in combination with H2O2. Consistent with the release of multiple CO molecules, CORM-401-induced vasodilation was three times higher than that elicited by CORM-A1, which exhibits a similar half-life to CORM-401 but liberates only one CO/mole of compound. Furthermore, endothelial cells exposed to CORM-401 accumulated CO intracellularly, accelerated migration in vitro and increased VEGF and IL-8 levels. Studies using pharmacological inhibitors revealed HO-1 and p38 MAP kinase as two independent and parallel mechanisms involved in stimulating migration. We conclude that the ability of CORM-401 to release multiple CO, its sensitivity to oxidants which increase CO release, and its vascular and pro-angiogenic properties highlight new advances in the design of CO-releasing molecules that can be tailored for the treatment of inflammatory and oxidative stress-mediated pathologies.

Figure optionsDownload as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Biochemical Pharmacology - Volume 102, 15 February 2016, Pages 64–77
نویسندگان
, , , , , , , , , ,