کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
2511904 1118299 2015 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Altered energy state reversibly controls smooth muscle contractile function in human saphenous vein during acute hypoxia–reoxygenation: Role of glycogen, AMP-activated protein kinase, and insulin-independent glucose uptake
موضوعات مرتبط
علوم پزشکی و سلامت داروسازی، سم شناسی و علوم دارویی داروشناسی
پیش نمایش صفحه اول مقاله
Altered energy state reversibly controls smooth muscle contractile function in human saphenous vein during acute hypoxia–reoxygenation: Role of glycogen, AMP-activated protein kinase, and insulin-independent glucose uptake
چکیده انگلیسی

Hypoxia is known to promote vasodilation of coronary vessels through several mediators including cardiac-derived adenosine and endothelium-derived prostanoids and nitric oxide. To date, the impact of endogenous glycogen depletion in vascular smooth muscle and the resultant alterations in cellular energy state (e.g., AMP-activated protein kinase, AMPK) on the contractile response to G protein-coupled receptor agonists (e.g., serotonin, 5-HT) has not yet been studied. In the present study, ex vivo exposure of endothelium-denuded human saphenous vein rings to hypoxic and glucose-deprived conditions during KCl-induced contractions for 30 min resulted in a marked depletion of endogenous glycogen by ∼80% (from ∼1.78 μmol/g under normoxia to ∼0.36 μmol/g under hypoxia). Importantly, glycogen-depleted HSV rings, which were maintained under hypoxia/reoxygenation and glucose-deprived conditions, exhibited significant increases in basal AMPK phosphorylation (∼6-fold ↑) and 5-HT-induced AMPK phosphorylation (∼19-fold ↑) with an accompanying suppression of 5-HT-induced maximal contractile response (∼68% ↓), compared with respective controls. Exposure of glycogen-depleted HSV rings to exogenous D-glucose, but not the inactive glucose analogs, prevented the exaggerated increase in 5-HT-induced AMPK phosphorylation and restored 5-HT-induced maximal contractile response. In addition, the ability of exogenous D-glucose to rescue cellular stress and impaired contractile function occurred through GLUT1-mediated but insulin/GLUT4-independent mechanisms. Together, the present findings from clinically-relevant human saphenous vein suggest that the loss of endogenous glycogen in vascular smooth muscle and the resultant accentuation of AMPK phosphorylation by GPCR agonists may constitute a yet another mechanism of metabolic vasodilation of coronary vessels in ischemic heart disease.

Figure optionsDownload as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Biochemical Pharmacology - Volume 97, Issue 1, 1 September 2015, Pages 77–88
نویسندگان
, , , , , , , ,