کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
2512450 | 1118355 | 2013 | 12 صفحه PDF | دانلود رایگان |

Reevesioside F, isolated from Reevesia formosana, induced anti-proliferative activity that was highly correlated with the expression of Na+/K+-ATPase α3 subunit in several cell lines, including human leukemia HL-60 and Jurkat cells, and some other cell lines. Knockdown of α3 subunit significantly inhibited cell apoptosis suggesting a crucial role of the α3 subunit. Reevesioside F induced a rapid down-regulation of survivin protein, followed by release of cytochrome c from mitochondria and loss of mitochondrial membrane potential (ΔΨm). Further examination demonstrated the mitochondrial damage in leukemic cells through Mcl-1 down-regulation, Noxa up-regulation and an increase of the formation of truncated Bid, tBim and a 23-kDa cleaved Bcl-2 fragment. Furthermore, reevesioside F induced an increase of mitochondria-associated acetyl α-tubulin that may also contribute to apoptosis. The caspase cascade was profoundly activated by reevesioside F. Notably, the specific caspase-3 inhibitor z-DEVD-fmk significantly blunted reevesioside F-induced loss of ΔΨm and apoptosis, suggesting that caspase-3 activation may further amplify mitochondrial damage and apoptotic signaling cascade. In spite of being a cardiac glycoside, reevesioside F did not increase the intracellular Ca2+ levels. Moreover, CGP-37157 which blocked Na+/Ca2+ exchanger on plasma membrane and mitochondria did not modify reevesioside F-mediated effect. In summary, the data suggest that reevesioside F induces apoptosis through the down-regulation of survivin and Mcl-1, and the formation of pro-apoptotic fragments from Bcl-2 family members. The loss of ΔΨm and mitochondrial damage are responsible for the activation of caspases. Moreover, the amplification of caspase-3-mediated signaling pathway contributes largely to the execution of apoptosis in leukemic cells.
Figure optionsDownload as PowerPoint slide
Journal: Biochemical Pharmacology - Volume 86, Issue 11, 1 December 2013, Pages 1564–1575