کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
2512469 1118356 2014 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Increase of mesenchymal stem cell migration by cannabidiol via activation of p42/44 MAPK
موضوعات مرتبط
علوم پزشکی و سلامت داروسازی، سم شناسی و علوم دارویی داروشناسی
پیش نمایش صفحه اول مقاله
Increase of mesenchymal stem cell migration by cannabidiol via activation of p42/44 MAPK
چکیده انگلیسی

Migration and differentiation of mesenchymal stem cells (MSCs) are known to be involved in various regenerative processes such as bone healing. However, little is known about the pharmacotherapeutical options aiming at the mobilization and differentiation of MSCs. The present study therefore focussed on cannabinoids which have been demonstrated to exhibit tissue healing properties. Using Boyden chamber assays, the non-psychoactive phytocannabinoid cannabidiol (CBD) was found to increase the migration of adipose-derived MSCs in a time- and concentration-dependent manner. CBD-induced migration was inhibited by AM-630 (CB2 receptor antagonist) and O-1602 (G protein-coupled receptor 55 [GRP55] agonist). Moreover, the promigratory effect of CBD was antagonized by inhibition of the p42/44 mitogen-activated protein kinase (MAPK) pathway which became activated upon CBD treatment. In line with this data, AM-630 and O-1602 attenuated CBD-induced p42/44 MAPK phosphorylation. A p42/44 MAPK-dependent promigratory effect was likewise demonstrated for the GPR55 antagonist O-1918 and the selective CB2 receptor agonist JWH-133. Additional evidence for a functional effect of CBD on MSCs was provided by experiments demonstrating long-term stimulation with CBD to induce differentiation of MSCs into the osteoblastic lineage as evidenced by increased mineralization assessed by cresolphthalein complexone assay and enhanced activity of alkaline phosphatase. Collectively, this study demonstrates CBD to promote the migration of MSCs via activation of the CB2 receptor and inhibition of GPR55 and to induce osteoblastic differentiation. CBD may therefore recruit MSCs to sites of calcifying tissue regeneration and subsequently support bone regeneration via an osteoanabolic action on MSCs.

Figure optionsDownload as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Biochemical Pharmacology - Volume 87, Issue 3, 1 February 2014, Pages 489–501
نویسندگان
, , , , ,