کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
2512866 1118380 2012 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Antiproliferative mechanisms of action of the flavin dehydrogenase inhibitors diphenylene iodonium and di-2-thienyliodonium based on molecular profiling of the NCI-60 human tumor cell panel
موضوعات مرتبط
علوم پزشکی و سلامت داروسازی، سم شناسی و علوم دارویی داروشناسی
پیش نمایش صفحه اول مقاله
Antiproliferative mechanisms of action of the flavin dehydrogenase inhibitors diphenylene iodonium and di-2-thienyliodonium based on molecular profiling of the NCI-60 human tumor cell panel
چکیده انگلیسی

Flavoprotein-dependent reactive oxygen species (ROS) play a critical role in cytokine-mediated signal transduction in normal tissues and tumor cells. The flavoenzyme inhibitors diphenylene iodonium (DPI) and di-2-thienyliodonium (DTI) have been used to inhibit membrane-bound, flavoprotein-containing NADPH oxidases, including epithelial and leukocyte NADPH oxidases (Nox1-5 and Duox 1 and 2). Recent evidence suggests that DPI can decrease tumor cell proliferation; however, the molecular mechanisms involved remain poorly defined. To explore the mechanisms underlying DPI- and DTI-related tumor cell growth delay, we examined growth inhibition patterns produced by both agents in the NCI-60 tumor panel, and determined expression levels of Nox gene family members across these cell lines. Possible molecular targets were predicted using the COMPARE program. DPI was more potent than DTI (GI50: 10 nM versus 10 μM); DPI and DTI exposure produced unique patterns of growth inhibition when evaluated against the small molecule anticancer database of the National Cancer Institute. Growth inhibition profiling of DPI revealed a modest positive correlation with Nox1 levels; novel mechanisms of DPI and DTI action, including alterations in Stat, Erk1/2, and Akt pathways, were inferred by correlation with NCI-60 Affymetrix® array data. Exposure of HT-29 colon cancer cells, which express Nox1, to DPI and DTI confirmed their inhibitory effects on steady state ROS levels, and demonstrated decreased Stat, Erk1/2, and Akt signaling mediated by IL-4, IL-6, IL-13, and IL-22, possibly due to a concomitant increase in tumor cell phosphatase activity. These findings suggest that DPI and DTI may act therapeutically by altering ROS-related signal transduction.

Figure optionsDownload as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Biochemical Pharmacology - Volume 83, Issue 9, 1 May 2012, Pages 1195–1207
نویسندگان
, , , , , , , , ,