کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
2523700 1557961 2016 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Pterostilbene, a novel natural plant conduct, inhibits high fat-induced atherosclerosis inflammation via NF-κB signaling pathway in Toll-like receptor 5 (TLR5) deficient mice
موضوعات مرتبط
علوم پزشکی و سلامت پزشکی و دندانپزشکی تومور شناسی
پیش نمایش صفحه اول مقاله
Pterostilbene, a novel natural plant conduct, inhibits high fat-induced atherosclerosis inflammation via NF-κB signaling pathway in Toll-like receptor 5 (TLR5) deficient mice
چکیده انگلیسی

Atherosclerosis is a specific form of an artery wall thickens, a syndrome affecting arterial blood vessels due to a chronic inflammatory response in the walls of arteries, which is promoted by fat accumulation. Toll-like receptors (TLRs) play prominent roles in inflammatory responses. And TLR5 is overexpressed in several diseases. Here in our study, we investigated the effect of TLR5 in high fat-induced atherosclerosis via NF-κB signaling pathway modulating pro-inflammatory cytokines releasing. Our results found that high fat induced atherosclerosis in wild type mice with fat accumulation and inflammatory response through NF-κB activation. Contrastly, TLR5 knockout mice displayed lower fat accumulation and ameliorated inflammation after high fat feeding with NF-κB inactivation. In addition, pterostilbene, as a natural dimethyl ether derivative of resveratrol mainly from blueberries, has diverse pharmacological activities, especially anti-inflammation. Our study also found that pterostilbene displayed inhibited role in suppressing inflammatory response through inactivating NF-κB signaling pathway regulated by TLR5 down-regulation in high fat-induced mice. Moreover, in vitro experiments of vascular smooth muscle cells (VSMCs) challenged with LPS or TNF-α, further indicated that NF-κB was involved in atherosclerosis progression, leading to high secretion of pro-inflammatory cytokines. However, VSMCs from TLR5 deficient mice inhibited phosphorylated levels of NF-κB signalilng pathway, finally resulting in down-regulation of inflammatory cytokines. Notably, pterostilbene also displayed suppressed role in inflammatory response via NF-κB inactivity in LPS or TNF-α-induced VSMCs by decreasing TLR5 expression. The results above indicated a novel therapeutic strategy of pterostilbene to protect against atherosclerosis via TLR5 regulation for clinic treatment in the future.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Biomedicine & Pharmacotherapy - Volume 81, July 2016, Pages 345–355
نویسندگان
, ,