کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
2567934 | 1128359 | 2006 | 7 صفحه PDF | دانلود رایگان |

We have previously shown that pentose phosphate pathway (PPP) inhibitors, 6-aminonicotimade (6-AN) and epiandrosterone (EPI), markedly reduce hypoxic pulmonary vasoconstriction (HPV). Although it has been suggested that changes in the NADPH/NADP+ ratio and redox status are involved in the mechanism of HPV, the role of PPP-derived NADPH in this phenomenon is not known. The aim of this study, therefore, was to investigate the role of PPP-derived NADPH in HPV using isolated rat pulmonary arteries (PA) and perfused rat lungs. The NADPH/NADP+ ratio and NADPH levels in PA and lungs exposed to hypoxia increased 2-fold and 7-fold, respectively, compared to time-matched normoxic controls. Both hypoxia-induced increases in lung NADPH levels and lung perfusion pressure were inhibited by 6-AN (500 μM) or EPI (300 μM). The chemical inhibitors of PPP and hypoxia similarly decreased lung tissue NOx levels by approximately 50%. In contrast, hypoxia increased the lung soluble guanylate cyclase (sGC) activity (from 22.9±6.3 to 57.1±7.6 pmol/min/g), which was prevented by PPP inhibitors. ODQ, a sGC inhibitor, potentiated HPV. These results suggest that while PPP-derived NADPH may play a significant role in HPV, it may also moderate the magnitude of HPV through activation of the NO-sGC-cGMP vasodilation pathway.
Journal: Pulmonary Pharmacology & Therapeutics - Volume 19, Issue 4, August 2006, Pages 303–309