کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
2567999 | 1561155 | 2016 | 12 صفحه PDF | دانلود رایگان |

Highlight
• Nectandrin B, a nutmeg lignan protects hepatocytes against oxidative damage.
• Nectandrin B exerts an indirect antioxidative effect via the activation of Nrf2.
• Both ERK and GSK-3β pathways contribute to the activation of Nrf2 and hepatocyte-protection by nectandrin B.
• Nectandrin B can inactivate GSK-3β through the activation of AMPK in HepG2 cells.
Oxidative stress can contribute to the development and progression of liver diseases, such as drug-induced or alcoholic liver injury, nonalcoholic fatty liver disease, and nonalcoholic steatohepatitis. Nectandrin B is a bioactive lignan isolated from nutmeg extract. To date, little information is available about its pharmacological activities in the liver. This study investigated the hepatocyte-protective effect of nectandrin B against tert-butylhydroperoxide-induced oxidative injury and the underlying molecular mechanism. The cell viability assay revealed that nectandrin B prevents apoptosis stimulated by tert-butylhydroperoxide in both HepG2 cells and primary mouse hepatocytes. Nectandrin B also attenuated ROS production and restored the depleted glutathione level. Real-time PCR and immunoblot analyses showed that the expression of glutamate-cysteine ligase, an enzyme responsible for the glutathione biosynthesis, was induced by nectandrin B, indicating its indirect antioxidative effect. The NF-E2-related factor-2 (Nrf2) regulates gene expression of an array of antioxidant enzymes in hepatocytes. Nectandrin B stimulated Nrf2 activation as evidenced by its enhanced nuclear accumulation and increased antioxidant response element (ARE)-luciferase activity. Intriguingly, the hepatocyte-protective effect of nectandrin B against oxidative damage was completely abrogated by Nrf2 knockdown using Nrf2 specific siRNA. Nectandrin B promoted ERK activation, but inactivated GSK-3β through the AMPK-mediated inhibitory phosphorylation. The enforced overexpression of dominant-negative mutant of MEK1 or AMPKα, or wild-type GSK-3β inhibited the increase in the NQO1-ARE-luciferase activity stimulated by nectandrin B, suggesting that both ERK and AMPK-GSK-3β signalings are involved in the activation of Nrf2/ARE pathway by nectandrin B. Consistent with this, cytoprotection and restoration of glutathione level by nectandrin B was also blocked by the overexpression of dominant-negative MEK1 or wild-type GSK-3β. Finally, our data demonstrate that nectandrin B has the ability to protect hepatocytes against oxidative injury through the activation of Nrf2/ARE pathway mediated by ERK phosphorylation and AMPK-dependent inactivation of GSK-3β.
Journal: Toxicology and Applied Pharmacology - Volume 307, 15 September 2016, Pages 138–149