کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
2781413 | 1153321 | 2009 | 7 صفحه PDF | دانلود رایگان |

Many clinical and experimental investigations address the influence of statins on bone formation and fracture healing. Simvastatin was shown to increase the expression of Bone morphogenetic protein (BMP-2), which is one of the most potent growth factors targeting bone formation. In this study, the effect of simvastatin locally applied from a bioactive polymer coating of implants on fracture healing was investigated. A closed fracture of the right tibia of 5-month-old Sprague–Dawley rats was performed. Intramedullary stabilization was achieved with uncoated vs. polymer-only coated vs. polymer plus drug coated titanium Kirschner wires. Test substances (either simvastatin low- or high dosed or BMP-2) were incorporated into a biodegradable layer of poly(d,l-lactide). Tibiae were harvested after 28 or 42 days, respectively and underwent biomechanical testing (torsional stiffness and maximum load) and histomorphometric analysis. Radiographic results demonstrated progressed callus consolidation in the BMP-2- and simvastatin-treated groups compared to the uncoated group at both timepoints. The simvastatin-high-dosed group revealed an increased torsional stiffness and significantly elevated maximum load (d 28) compared to control group as well as a significant increase in both parameters at d 42. BMP-2-treated animals showed significantly elevated maximum load and stiffness at the early timepoint and elevated torsional stiffness after d 42.The histomorphometric analysis revealed a significantly decreased cartilage area for BMP-2 treated animals at d 28. Even though an increase of mineralized areas among periosteal callus was found at d 42 for simvastatin-high as well as BMP-2 treated animals, no significant difference could be detected at both timepoints compared to the uncoated group. However, simvastatin-high treated animals revealed significantly reduced cartilage areas within the periosteal callus at d 42. The present study revealed a dose-dependent effect and improved fracture healing under local application of simvastatin. Biomechanical, radiographic and histomorphometric properties showed comparable results to BMP-2- treated animals in this study.
Journal: Bone - Volume 45, Issue 3, September 2009, Pages 505–511