کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
280219 | 1430387 | 2006 | 23 صفحه PDF | دانلود رایگان |

Reconstructing damage geometry with computationally efficient algorithms is of primary importance in establishing a robust structural health monitoring system (SHMS). In this paper electromagnetic migration, a linearized imaging algorithm, is adopted to image the damages in reinforced concrete structures. This algorithm is formulated in time-domain for 3-D inhomogeneous isotropic and lossy structures. In order to reduce the computational cost and to examine the damage resolution of this imaging algorithm, different imaging conditions are introduced. Numerical simulations in 2-D transverse magnetic (TM) wave for a reinforced concrete slab with multiple damages are performed to test the effectiveness of the algorithm. All synthetic sensor data, incident field, and migration field are computed via a finite difference time-domain (FDTD) method. It is concluded that the proposed imaging algorithm is capable of efficiently identifying the damages geometries, is robust against measurement noise, and may be employed in a SHMS.
Journal: International Journal of Solids and Structures - Volume 43, Issues 18–19, September 2006, Pages 5886–5908