کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
2899142 1173117 2009 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Cardiac oxidative stress and remodeling following infarction: role of NADPH oxidase
موضوعات مرتبط
علوم پزشکی و سلامت پزشکی و دندانپزشکی کاردیولوژی و پزشکی قلب و عروق
پیش نمایش صفحه اول مقاله
Cardiac oxidative stress and remodeling following infarction: role of NADPH oxidase
چکیده انگلیسی

BackgroundThere is growing recognition that oxidative stress plays a role in the pathogeneses of myocardial repair/remodeling following myocardial infarction (MI). Nicotinamide adenine denucleotide phosphate (NADPH) oxidase is a major source for cardiac reactive oxygen species production. Herein, we studied the importance of NADPH oxidase in development of cardiac oxidative stress and its induced molecular and cellular changes related to myocardial repair/remodeling.MethodsMI was created by coronary artery ligation in C57/BL (wild type) and NADPH oxidase (gp91phox) knockout mice. Cardiac oxidative stress, inflammatory/fibrogenic responses, apoptosis, and hypertrophy were detected by in situ hybridization, immunohistochemistry, terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling (TUNEL), picrosirius red staining, and image analysis, respectively, at different stages post MI.ResultsIn wild-type mice with MI, and compared to sham-operated animals, we observed significantly increased gp91phox and 3-nitrotyrosine, a marker of oxidative stress, in the infarcted myocardium; accumulated macrophages and myofibroblasts at the infarct site; abundant apoptotic myocytes primarily at border zones on Day 3; and numerous apoptotic inflammatory/myofibroblasts in the later stages. In addition, we detected significantly increased transforming growth factor β1, tissue inhibitor of metalloprotease 2, and type 1 collagen gene expression; continuously increasing collagen volume in the infarcted myocardium; and hypertrophy in noninfarcted myocardium. Compared to wild-type mice with MI, we did not observe significant difference in infarct size/thickness, cardiac hypertrophy, myocyte apoptosis, inflammatory/fibrogenic responses, as well as cardiac oxidative stress in gp91phox knockout mice.ConclusionOur findings indicate that during NADPH oxidase deficiency, superoxide production can be compensated by other sources, which leads to cardiac oxidative stress and its related molecular/cellular events in the infarcted heart.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Cardiovascular Pathology - Volume 18, Issue 3, May–June 2009, Pages 156–166
نویسندگان
, , , ,