کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
3056078 | 1186553 | 2010 | 5 صفحه PDF | دانلود رایگان |

Neurodegenerative diseases, Alzheimer's and Parkinson's diseases, and amyotrophic lateral sclerosis (ALS) are progressive and devastating disorders of the nervous system without cure. Although a number of distinct, but not mutually exclusive, mechanisms can affect disease pathogenesis, neuroinflammation stands in common. Neuroinflammatory responses occur as a consequence of oxidative and excitotoxic neuronal damage, mitochondrial dysfunction, and protein aggregation. Thus, it is believed drugs that modulate inflammation may combat disease progression. Such strategies include those commented on in the report by Arie Neymotin et al. demonstrating lenalidomide's anti-inflammatory and neuroprotective responses in the G93A mutant superoxide dismutase-1 mouse model of ALS (Neymotin et al., 2009). While anti-inflammatory interventions may be required, they may not be sufficient to positively affect clinical outcomes. The targeting of combinations of pathogenic events including clearance of disaggregated proteins together with neuroprotective and immune modulatory strategies may all be required to facilitate positive therapeutic outcomes. This may include the targeting of both innate and adaptive neurotoxic immune responses. This commentary is designed to summarize the promises and perils in achieving immunoregulation for brain homeostatic responses and inevitable therapeutic gain. Promising new ways to optimize immunization schemes and measure their clinical efficacy are discussed with a particular focus on ALS.
Journal: Experimental Neurology - Volume 222, Issue 1, March 2010, Pages 1–5