کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
3376987 | 1219951 | 2014 | 7 صفحه PDF | دانلود رایگان |

The lungs are a major site of Pseudomonas aeruginosa infection in patients with compromised immune systems. P. aeruginosa secretes a number of toxins by a type III secretion system, and these are important in virulence. One of these toxins, ExoS can induce a cytotoxic effect and is associated with the ability to produce lung damage. ExoS is a bifunctional toxin, with N-terminal GTPase-activating protein (GAP) activity and a C-terminal ADP ribosyl transferase (ADPRT) domain. Although these two domains have numerous potential cellular targets, the overall mechanism of ExoS-induced cytotoxicity remains unclear. We carried out a yeast two-hybrid screen using the ExoS truncation mutant ExoSΔ (residue 1–388), which lacks the 14-3-3 binding site in the ADPRT domain, to identify unknown cellular targets associated with ExoS-induced cytotoxicity. We identified the mammalian factor, kinesin family member 7 (KIF7), which is involved in Hedgehog signaling, as a binding partner for ExoSΔC2. A pull-down assay revealed that ExoS bound to the truncated KIF7 gene encoding the N-terminal domain (residues 1–109) of KIF7. Yeast two-hybrid analysis showed that the ADPRT domain (residues 234–354) of ExoS bound to the truncated KIF7. Furthermore, exoS gene expression and silencing the expression of KIF7 both caused significant cytotoxicity in cultured human bronchial epithelial cells (BEAS-2B). Taken together, our results suggest that ExoS could induce cytotoxicity in BEAS-2B cells by interacting with KIF7.
Journal: Journal of Infection and Chemotherapy - Volume 20, Issue 2, February 2014, Pages 121–127