کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
3406719 | 1223588 | 2012 | 9 صفحه PDF | دانلود رایگان |

White spot syndrome virus is a highly pathogenic virus that infects crayfish and other crustaceans. VP28 is one of its major envelope proteins, and plays a crucial role in viral infection. Cell-penetrating peptides are short peptides that facilitate cellular uptake of various molecular cargoes, and one well known example is TAT peptide from HIV-1 TAT protein. In this study, recombinant plasmids were constructed and transformed into Escherichia coli strain BL21 (DE3) to express TAT-VP28, VP28, TAT-VP28-EGFP and VP28-EGFP fusion proteins. Enzyme-linked immunosorbent assay (ELISA) and flow cytometry methods were used to confirm that TAT fusion proteins can translocate from the intestine to the hemolymph of the crayfish Cambarus clarkii. After immunization, activities of phenoloxidase and superoxide dismutase were analyzed, and it was found that rTAT-VP28 produced the most pronounced increase in both C. clarkii were vaccinated by oral administration of rTAT-VP28 and rVP28 for 7 and 14 days, and rTAT-VP28 resulted in the highest relative percent survival (RPS) (63.3% at 7 days, and 67.8% at 14 days), compared with rVP28 (44.4% at 7 days, and 53.6% at 14 days) following challenge with WSSV after the last day of feeding. This study reports the use of TAT-derived peptide as an oral delivery method of a subunit vaccine against WSSV in C. clarkii.
► Cell-penetrating peptides were used to deliver protein vaccines to crayfish.
► Translocation of rTAT-VP28 across the crayfish intestine was demonstrated.
► Vaccination with rTAT-VP28 provided improved protection against WSSV infection.
► A novel approach was used as a more practical strategy to control white spot syndrome.
Journal: Journal of Virological Methods - Volume 181, Issue 1, April 2012, Pages 59–67