کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
34438 | 45026 | 2014 | 12 صفحه PDF | دانلود رایگان |

• γ-Irradiation leads to significant increase in both TPC and TFC.
• Improvement of the quality of mango wine by limiting the microbial load.
• γ-Irradiation induced significant increase in various in vitro antioxidant activities.
• Mango wine protected DNA against OH and γ-radiation induced damage in vitro.
The present study aims to evaluate the effect of gamma-irradiation on the total phenolic content (TPC), total flavonoid content (TFC), antioxidant and radioprotective properties of the mango wine. γ-Irradiation resulted in an increase in TPC and TFC in a dose dependent manner and their concentrations were in the range of 226.8–555.3 mg/L and 68.6–165.1 mg/L, respectively, in 3 kGy irradiated wine samples. There was a significant increase in the concentration of certain polyphenolic compounds with the exception of ellagic acid, which was unaltered and a significant decrease in the ferulic and synapic acids as measured by HPLC. Treatment with γ-irradiation resulted in overall reduction in microbial loads; further, no microbe was detected with a dose of 3 kGy in all wine samples, indicating improvement in the quality of mango wine. The DPPH radical scavenging activity of mango wine varied from 97.14 (Sindhura) to 83.64% (Mulgoa) and the DMPD scavenging capacity varied from 95.27 (Banginapalli) to 77.8% (Mulgoa) at 100 μL and 3 kGy dose. However, the FRAP activity of mango wine varied from 33.96 (Sindhura) to 27.38 mM/L (Mulgoa), and the NO scavenging capacity from 88.2 (Banginapalli) to 74.44% (Mulgoa) at 500 μL and 3 kGy dose. These scavenging activities were significantly increased with the irradiation dose and also with concentration. Mango wine was also demonstrated to protect DNA against UV + H2O2 and γ-irradiation (500 Gy) induced DNA damage, confirming its protective actions in vitro and thus could be a valuable source of antioxidants.
Journal: Process Biochemistry - Volume 49, Issue 11, November 2014, Pages 1819–1830