| کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
|---|---|---|---|---|
| 391697 | 661932 | 2014 | 13 صفحه PDF | دانلود رایگان |
• A change detection technique is proposed using ensemble of semi-supervised classifiers.
• Iterative learning of classifiers is continued using the unlabeled and a few labeled patterns.
• Ensemble agreement is utilized for choosing the unlabeled patterns for the next training step.
• Results are found to be significantly better for the proposed method.
In this article, a novel approach using ensemble of semi-supervised classifiers is proposed for change detection in remotely sensed images. Unlike the other traditional methodologies for detection of changes in land-cover, the present work uses a multiple classifier system in semi-supervised (leaning) framework instead of using a single weak classifier. Iterative learning of base classifiers is continued using the selected unlabeled patterns along with a few labeled patterns. Ensemble agreement is utilized for choosing the unlabeled patterns for the next training step. Finally, each of the unlabeled patterns is assigned to a specific class by fusing the outcome of base classifiers using some combination rule. For the present investigation, multilayer perceptron (MLP), elliptical basis function neural network (EBFNN) and fuzzy k-nearest neighbor (k-nn) techniques are used as base classifiers. Experiments are carried out on multi-temporal and multi-spectral images and the results are compared with the change detection techniques using MLP, EBFNN, fuzzy k-nn, unsupervised modified self-organizing feature map and semi-supervised MLP. Results show that the proposed work has an edge over the other state-of-the-art techniques for change detection.
Journal: Information Sciences - Volume 269, 10 June 2014, Pages 35–47
